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Plasma physics on www

• Fusion energy

www.fusie-energie.nl (nuclear fusion and ITER, in Dutch)

• Solar physics

dot.astro.uu.nl (Dutch Open Telescope)

www.spaceweathercenter.org (space weather)

• Plasmas general

www.plasmas.org (basics, applications of plasmas)

• These notes

ftp://ftp.astro.iag.usp.br/pub/goedbloed/ (download pdf files)
or
www.rijnh.nl/users/goedbloed (download pdf files)

http://www.fusie-energie.nl
http://dot.astro.uu.nl
http://www.spaceweathercenter.org
http:/www.plasmas.org
ftp://ftp.astro.iag.usp.br/pub/goedbloed/
http:/www.rijnh.nl/users/goedbloed
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Overview

• Motivation: plasma occurs everywhere in the Universe ⇒ magnetized plasma is
a unifying theme for laboratory and astrophysical plasma physics; [ book: Sec. 1.1 ]

• Thermonuclear fusion: fusion reactions, conditions for fusion, magnetic confine-
ment in tokamaks; [ book: Sec. 1.2 ]

• Astrophysical plasmas: the standard view of nature, why it fails, examples of
astrophysical plasmas; [ book: Sec. 1.3 ]

• Definition of plasma: usual microscopic definition (collective interactions), macro-
scopic definition (the magnetic field enters). [ book: Sec. 1.4 ]
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Plasma

• Most common (90%) state of visible matter in the Universe.

• On earth exceptional, but obtained in laboratory thermonuclear fusion experiments
at high temperatures (T ∼ 108 K).

• Crude definition: Plasma is a completely ionised gas, consisting of freely moving
positively charged nuclei and negatively charged electrons.
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Applications

• Magnetic plasma confinement for (future) energy production by Controlled Ther-
monuclear Reactions.

• Dynamics of astrophysical plasmas (solar corona, planetary magnetospheres, pul-
sars, accretion disks, jets, etc.).

• Common ground: Plasma interacting with a magnetic field.
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Reactions of hydrogen isotopes
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Two products

• Charged α particles:
capture in plasma magnetic field ⇒ α particle heating

• Neutrons:
capture in Li6 blanket ⇒ fusion energy + T3 breeding
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Why plasma?

• To overcome electrostatic repulsion
of nuclei need 10 keV

⇒ T ∼ 108 K (ionisation at 14 eV). + n D 
2

⇒Plasma≡ completely ionised gas consisting of freely moving positively charged nuclei
and negatively charged electrons.
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How to confine?

• Magnetic fields:

1. charged particles gyrate around field lines;

2. fluid and magnetic field move together (“B frozen into the plasma”);

3. thermal conductivity: κ‖ ≫ κ⊥ .

⇒ Need: Closed magnetic geometry.
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Power balance

Power contributions (T̃ in units of keV):

• thermonuclear output PT = 1

4
〈σv〉n2ET ≡ n2f(T̃ ) , ET ≈ 22.4 MeV ,

• Bremsstrahlung losses PB = αn2T̃ 1/2 , α ≈ 3.8 × 10−29 J1/2 m3 s−1 ,

• heat transport losses PL = 3nT̃/τE .

(a) Original idea (Lawson): three power contributions externally available for conversion
into electricity and back again into plasma heating with efficiency η ≈ 0.33 ,

PB + PL = η (PT + PB + PL) (1)

⇒ ignition condition:
nτE =

3T̃

(η/(1 − η)) f(T̃ ) − αT̃ 1/2
. (2)

(b) Present approach (more restrictive): ignition when power losses are balanced by
α-particle heating Pα,

PB + PL = Pα = 1

4
〈σv〉n2Eα ≡ n2f(T̃ ) , Eα ≈ 3.5 MeV (3)

⇒ formally condition (2) still applies, but now with new f and η ≈ 0.135 .
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Power balance (cont’d)

• Fusion power ⇔ radiation + transport

losses:

(a) Lawson criterion: lower curve,

(b) Modern approach: upper curve.

• Upper curve at minimum ( T̃ ∼ 20 keV !):

nτE ∼ 3 × 1020 m−3 s ;

typically:

n ∼ 1020 m−3 → τE ∼ 3 s !

⇒ Magnetic fields provide the only way to confine matter of such high temperatures
during such long times.
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Interaction of currents and magnetic fields

• Schematic history of
fusion experiments:

Tokamak:

delicate balance between equilibrium & stability

z - pinch:

very unstable
(remains so in a torus)

  θ - pinch:

end-losses
(in torus: no equilibrium)

Bj

B

B

j
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Tokamak

• Magnetic confinement:

poloidal coils producing
toroidal magnetic field

transformer
winding
(primary circuit)

resultant 
helical field

plasma contained 
by magnetic field

iron transformer core

plasma current
p p

(secondary circuit)B pol : poloidal
magnetic field

B tor : toroidal
magnetic field
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Tokamak (cont’d)

• Goal is electricity producing power plants:
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Progress in fusion research

• Progress made in con-
trolled fusion over the
years shows the same
impressive advance as
other fields recognized
as world leaders.

(from: CRPP Annual Report 2000)
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The Standard View of Nature

Nuclear forces

⇓

quarks / leptons

nuclei (+) / electrons (−) 10−15 m

Electrostatic forces

⇓

atoms / molecules 10−9 m

(ordinary matter: electrically neutral)

.........

Gravity

⇓

stars / solar system 109/1013 m

galaxies / clusters 1020/1023 m

universe 1026 m

However, ...
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The Universe does not consist of ordinary matter

• > 90% of visible matter is plasma (and dark matter may also be partly plasma):

electrically neutral, where nuclei and electrons are not tied in atoms but

freely move about to form one collective fluid.

• Unavoidable large scale result is induction of currents and magnetic fields:

magnetic flux tubes confining plasma become the basic dynamical entities.

(Example: magnetic flux tubes in the solar corona).
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Geometry

• Spherical symmetry of atomic physics and gravity (central forces) not present on the
plasma scale:

∇ · B = 0 is not compatible with spherical symmetry
(example: solar flares).
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Example: The Sun

a magnetized plasma!
(sunatallwavelengths.mpeg)
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Example: Coronal loops

[ from Priest, Solar Magnetohydrodynamics (1982) ]
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Example: Coronal loops (cont’d)

[ from recent observations with TRACE spacecraft ]
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Example: Stellar wind outflow (simulation)

• Axisymmetric magnetized
wind with a ‘wind’ and a
‘dead’ zone

[ Keppens & Goedbloed,

Ap. J. 530, 1036 (2000) ]
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Example: Magnetosphere
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Example: Polar lights

Beauty of the polar lights (a1smallweb.mov)

Solar wind powering auroral displays (fuvmovie.mpeg)
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Example: Accretion disk and jets (YSO)

Young stellar object
(M∗ ∼ 1M⊙):
accretion disk ‘seen’
edge-on as dark strip,
jets colored red.
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Example: Accretion disk and jets (AGN)

Active galactic nucleus (M∗ ∼ 108M⊙):
optical emission (blue) centered on disk,
radio emission (red) shows the jets.
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Example: Accretion disk and jets (simulation)

with VAC ≡ Versatile Advection Code [Tóth (1996)]

Stationary end state from the simulation of a
Magnetized Accretion Ejection Structure:

disk density surfaces (brown), jet magnetic
surface (grey), helical field lines (yellow),
accretion-ejection particle trajectory (red).

[ Casse & Keppens, Ap. J. 601, 90 (2004) ]
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Crude definition:

Plasma is an ionized gas.

Rate of ionization: ni
nn

=
(

2πmek
h2

)3/2 T 3/2

ni
e−Ui/kT (Saha equation)

– air: T = 300 K , nn = 3× 1025 m−3 , Ui = 14.5 eV ⇒ ni/nn ≈ 2× 10−122 (!)

– tokamak: T = 108 K , ni = 1020 m−3 , Ui = 13.6 eV ⇒ ni/nn ≈ 2.4 × 1013
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Microscopic definition:

Plasma is a quasi-neutral gas of charged and neutral particles which exhibits collec-
tive behaviour (Chen).

(a) Long-range collective interactions dominate over binary collisions with neutrals

(b) Length scales large enough that quasi-neutrality (ne ≈ Zni) holds

(c) Sufficiently many particles in a Debye sphere (statistics)
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Collective behavior

Conditions:

(a) τ ≪ τn ≡
1

nnσvth

tokamak: τ ≪ 2.4 × 106 s

corona: τ ≪ 2 × 1020 s ;

(b) λ ≫ λD ≡

√
ǫ0kT

e2n

tokamak: λD = 7×10−5 m

corona: λD = 0.07 m ;

(c) ND ≡ 4

3
πλ3

D n ≫ 1

tokamak: ND = 1.4 × 108

corona: ND = 1.4 × 109 .

tokamak

air

T

corona sun

1032

108

1

core sun

102 104
 106

 1010

n

108
 

1024

1016

λD = 10- 8 m

τn = 6 x 1017 s

λD = 10- 4 m

λD = 1 m

τn = 1 s  
N D = 108

tokamak

N D = 1016

N D = 1
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So far, only the electric field appeared. (LOCAL)
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Macroscopic definition:

For a valid macroscopic model of magnetized plasma dynamical configurations, size,
duration, density, and magnetic field strength should be large enough to establish
fluid behavior and to average out the microscopic phenomena (i.e. collective plasma
oscillations and cyclotron motions of electrons and ions).

Now, the magnetic field enters: (GLOBAL !)

(a) τ ≫ Ω−1

i ∼ B−1 (time scale longer than inverse cyclotron frequency);

(b) λ ≫ Ri ∼ B−1 (length scale larger than cyclotron radius).
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⇒ MHD ≡ magnetohydrodynamics


