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Chapter 6. Spectral Theory |

| Overview |

e Intuitive approach to stability: two viewpoints for study of stability, linearization
and Lagrangian reduction; [ book: Sec. 6.1]

e [orce operator formalism:  equation of motion, Hilbert space, self-adjointness of

the force operator; [ book: Sec. 6.2]
e (Quadratic forms and variational principles: expressions for the potential energy,
different variational principles, the energy principle; [ book: Sec. 6.4]
e Further spectral issues: returning to the two viewpoints; [ book: Sec. 6.5]

e [Extension to interface plasmas:  boundary conditions, extended variational princi-
ples, Rayleigh—Taylor instability. [ book: Sec. 6.6]
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[ Two viewpoints |

e How does one know whether a dynamical system is stable or not?

Wo
® ® °
W,
Energy Wi
Wo
3 &
Force —> >
< S
F F
stable unstable

e Method: split the non-linear problem in static equilibrium (no flow) and small (linear)
time-dependent perturbations.

e Two approaches: exploiting variational principles involving quadratic forms (energy),
or solving the partial differential equations themselves (forces).
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[ Aside: nonlinear stability |

e Distinct from linear stability, involves finite amplitude displacements:
(a) system can be linearly stable, nonlinearly unstable;

(b) system can be linearly unstable, nonlinearly stable (e.g. evolving towards
the equilibrium states 1 or 2).
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e Quite relevant for topic of magnetic confinement, but too complicated at this stage.
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 Linearization |

e Start from ideal MHD equations:

0

p(a—‘t’+v.vv):—vp+ij—pvq>, i=VxB, (1)
%: —Vv-Vp—pV - v, (2)
%—]?zvx(va), V-B=0, (3)

dp
— = —V_ : 4
5 V- (pv) (4)

assuming model | (plasma—wall) BCs:

n-v=_0, n-B=0 (atthe wall). (5)

e Linearize about static equilibrium with time-independent pg, pg, By, and vo = 0:

Jo X By = Vpy+ pVP, Jo=V x By, V- -By=0, (6)

n-By=0 (atthe wall). (7)
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e Time dependence enters through linear perturbations of the equilibrium:
v(rt) = vi(r, 1),
p(r;t) = po(r) + pi(r, 1),
B(r,t) = By(r) + By(r, 1),
p(r.t) = po(r) + pi(r,t),

e Inserting in Egs. (I)—) yields linear equations for v, p1, By, p1 (note strange order!):

(all, except vi: | fi(r,t)| < |fo(r)]). (8)

ov i ) .

Poﬁ—tl = —Vpi+h1 XBo+Jjox B —p1 VO, 1=V x By, (9)
0
% = —v1-Vpy— 7V - vy, (10)
B
0
% = —V- (pon) . (12)

Since wall fixed, so is n, hence BCs (B) already linear:

n-vy =0, n-B; =0 (at the wall). (13)
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 Lagrangian reduction |

e Introduce Lagrangian displacement vector field &(r, t):
plasma element is moved over £(r, t) away from the equilibrium position.

& ()

— -
0

= Velocity is time variation of £(r, ¢) in the comoving frame,

- Dg _ 0¢
VED T o TV Ve (14)

Involving the Lagrangian time derivative D7 (co-moving with the plasma).



= Equation of motion with force operator F.
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e Linear (first order) part relation yields
o€
VRV = — 15
only involving the Eulerian time derivative (fixed in space).
e Inserting in linearized equations, can directly integrate (12):
dp
SE=-Velv) = ==V (pk). (16)
Similarly linearized energy (10) and induction equation (L1)) integrate to
pr=—§& Vpy—ypV - &, (17)
B =V x (£ xBjy) (automatically satisfies V-B; =0). (18)
e Inserting these expressions into linearized momentum equation yields
0°¢
Pow = F(ﬁl(&)» B:(§), Pl(E)) : (19)
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( Force Operator formalism |

Insert explicit expression for F = Newton’s law for plasma element:

F&)=-Vr—-Bx(VxQ)+(VxB)xQ+(VD)V-(p§) :pg%, (20)
with change of notation (so that we can drop subscripts ¢ and ):
m=p =—wV-§£-& Vp, (21)
Q =B, =Vx(xB). (22)
Geometry (plane slab, cylinder, torus, etc.) defined by shape wall, through BC:
n-&=0 (at the wall). (23)

Now count: three 2nd order PDEs for vector & =- sixth order Lagrangian system;
originally: eight 1st order PDEs for p, vi, p1, Bi = eight order Eulerian system.

Third component of B; is redundant (V - B; = 0), and equation for p; produces
trivial Eulerian entropy mode wg = 0 (with py #20,butv; =0,p; =0, B; =0).

= Neglecting this mode, Lagrangian and Eulerian representation equivalent.
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 Ideal MHD spectrum |

e Consider normal modes:

E(r,t) = &(r)e™™. (24)
= Equation of motion becomes eigenvalue problem:
F(§) = —pw’€. (25)

e For given equilibrium, collection of eigenvalues {w?*} is spectrum of ideal MHD.

= Generally both discrete and continuous (‘improper’) eigenvalues.

e The operator p‘lF Is self-adjoint (for fixed boundary).
= The eigenvalues w? are real.

= Same mathematical structure as for quantum mechanics!
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e Since w? real, w itself either real or purely imaginary

= Inideal MHD, only stable waves (w? > 0) or exponential instabilities (w* < 0):
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— Crudely, F(&) ~ —€& forw? > 0 and ~ & forw? < 0 (cf. intuitive picture).
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 Dissipative MHD |

e In resistive MHD, operators no longer self-adjoint, eigenvalues w? complex.

= Stable, damped waves and ‘overstable’ modes ( = instabilities):
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[ Stability in ideal MHD |

e For ideal MHD, transition from stable to unstable through w? = 0 : marginal stability.

= Study marginal equation of motion

AN

F(£)=0. (26)
= In general, this equation has no solution since w? = 0 is not an eigenvalue.

e Can vary equilibrium parameters until zero eigenvalue is reached, e.g. in tokamak
stability analysis, the parameters (3 = Q,uop/B2 and ‘safety factor’ ¢; ~ 1/1,,.

= Find critical curve along which w? = 0 is an eigenvalue:
A

B unstable

stable

)ql

= this curve separates stable from unstable parameter states.
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[Physical meaning of the terms of F]

e Rearrange terms:

F(&) =V(wV-§ -Bx(VxQ)+ V(- -Vp)+jxQ+ VOV (pf). (27)
First two terms (with vp and B) present in homogeneous equilibria, last three terms
only in inhomogeneous equilibria (when Vp, j, VO #£ 0).

e Hogeneous equilibria
= isotropic force V(vpV - &) : compressible sound waves;
= anisotropic force B x (V x Q) field line bending Alfvén waves;

= waves always stable (see below).

e Inhomogeneous equilibria have pressure gradients, currents, gravity

—> potential sources for instability: will require extensive study!
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 Homogeneous case |

e Sound speed ¢ = \/vp/p and Alfvén speed b = B/,/p constant, so that
pTIF(E) =PVV - €+Db x (Vx(Vx(bx§))=—w. (28)
Plane wave solutions & ~ exp(ik - r) give
p'F(€) =[-(k-b)?*1— (b +Akk+k-b(kb+bk)]- &=—-w¢ (29)
=> recover the stable waves of Chapter 5.
e Recall: slow, Alfvén, fast eigenvectors és éA, éf form orthogonal triad
=>- can decompose any vector in combination of these 3 eigenvectors of F;

—> eigenvectors span whole space: Hilbert space of plasma displacements.

e Extract Alfvén wave (transverse incompressible k - € = 0, B and k along 2 ):

1g 0%¢ 0 .
pE, = b= = k2’ £ = aiy = —W?E,, (30)

2 = wA = k2b2 dynamical centerpiece of MHD spectral theory.

= Alfvén waves, w



Spectral Theory: Force operator formalism (8) 6-15

[ Hilbert space |

e Consider plasma volume V" enclosed by wall 11/, with two displacement vector fields
(satisfying the BCs):

E=€&(r,t) (onV), where n-€ =0 (atW),

(31)
n=mn(r,t) (onV), where n-n=0 (atW).
Define inner product (weighted by the density):
em=1[pe mav, (32)
and associated norm
€l = (¢,€)"7. (33)

e All functions with finite norm ||&|| < oo form linear function space, a Hilbert space.

= Force operator F is linear operator in Hilbert space of vector displacements.
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[ Analogy with quantum mechanics |

e Recall Schrédinger equation for wave function ¢ :
Hy = FEy. (34)
= Eigenvalue equation for Hamiltonian A with eigenvalues E (energy levels).
- continuous
= -7 = Spectrum of eigenvalues { £’} consists of discrete
_ spectrum for bound states (£ < 0) and continuous

discrete spectrum for free particle states (£ > 0).

= Norm ||¢|| = (1, 1) '/? gives probability to find particle in the volume.

e Central property in quantum mechanics: Hamiltonian H is self-adjoint linear operator
in Hilbert space of wave functions,

(1, Hipy) = (Hipr, ¥a) - (35)
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[ Back to MHD |

How about the force operator F'? Is it self-adjoint and, if so, what does it mean?

Self-adjointness is related to energy conservation. For example, finite norm of £, or
its time derivative & , means that the kinetic energy is bounded:

K=b[pavad [ofav—(6d =P (36)

Consequently, the potential energy (related to F, as we will see) is also bounded.

The good news: force operator p‘lF Is self-adjoint linear operator in Hilbert space
of plasma displacement vectors:

.0 B @) =4 [0 F@©aV =} [ € For)av = (7 Fm.e). @)

= The mathematical analogy with quantum mechanics is complete.

And the bad news: the proof of that central property is horrible!
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 Proving self-adjointness |

Proving
[P av = [&-Fu)av

iInvolves lots of tedious vector manipulations, with two returning ingredients:
— use of equilibrium relations j x B=Vp+pV®, j=V xB, V-B =0;

— manipulation of volume integral to symmetric part in 7 and & and divergence
term, which transforms into surface integral on which BCs are applied.

Notational conveniences:

— defining magnetic field perturbations associated with & and 7y,

Q(r) =V x (£ xB) (on V),
(38)
R(r)=Vx(nxB) (onV);

— exploiting real-type scalar product,

n" - F(£) + complex conjugate = n-F(§).
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e Omitting intermediate steps [ see book: Sec. 6.2.3 ], we get useful, near-final result:

/n-F(S)dV= —/{wV-év-n+Q-R+%VP-(£V-n+nv-€)
+3] - MXQ+EXR) =5V [V - (p€) + &V - (pm)] }dV
+/n-n[7pV-£+£-Vp—B-Q]dS. (39)

This symmetric expression is general, valid for all model |-V problems.

e Restricting to model | (wall on the plasma), surface integrals vanish because of BC
n - £ = 0, and self-adjointness results:

/{n-F(S)—£-F(n)}dV=/{n-nhpv-£+€-vp—B-Q]
—n-&vwV-n+n-Vp—B-R|}dS=0, QED. (40)

e Proof of self-adjointness for model Il, etc. is rather straightforward now. It involves
manipulating the surface term, using the pertinent BCs, to volume integral over the
external vacuum region + again a vanishing surface integral over the wall.
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[ Important result |

e The eigenvalues of p'F are real.

e Proof

2.

— Consider pair of eigenfunction £, and eigenvalue —w; :

p_lF(£n> — _w?z gn :
— take complex conjugate:
pF(E,) =p F(§)=—w &
— multiply 1st equation with & and 2nd with &, , subtract, integrate over volume,

and exploit self-adjointness:
0=(w, —w,)I€F = wy=w", QED.

n n

e Consequently, w? either > () (stable) or < 0 (unstable): everything falls in place!



Spectral Theory: Quadratic forms and variational principles (1) 6-21

[Quadratic forms for potential energy]

e Alternative representation is obtained from expressions for kinetic enery K and
potential energy W, exploiting energy conservation: H = W + K = const .

e (a) Use expression for /{ (already encountered) and equation of motion:

dK  d : e »
b=t eerar] = [oega - [eF@av. @
(b) Exploit energy conservation and self-adjointness:

-t [[eFe+e p@|av -2 |- [e Feav).

(c) Integration yields linearized potential energy expression:

W = —%/g* F(&)dV . (42)

e Intuitive meaning of W potential energy increase from work done against force F
(hence, minus sign), with % since displacement builds up from 0 to final value.
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e More useful form of 1V follows from earlier expression 39) (with 7 — &) used in
self-adjointness proof:

Wzéfhp!vaﬂ!Q|2+<£-Vp>vs*+j-s* £ Q
(& V)V (p)]dV, (43)

to be used with model | BC

n-£=0 (at the wall) . (44)

e Earlier discussion on stability can now be completed:
— first two terms (acoustic and magnetic energy) positive definite
= homogeneous plasma stable;
— last three terms (pressure gradient, current, gravity) can have either sign
= Inhomogeneous plasma may be unstable (requires extensive analysis).
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[Three variational principles]

e Recall three levels of description with differential equations:

(a) Equation of motion (20): F(&) = p€ = full dynamics;
(b) Normal mode equaton (25): F(é’) = —prE’ = spectrum of modes;
(c) Marginal equation of motion (26): F(f) =0 = stability only.

e Exploiting quadratic forms W and K yields three variational counterparts:
(a) Hamilton’s principle = full dynamics;
(b) Rayleigh—Ritz spectral principle => spectrum of modes;

(c) Energy principle = stability only.
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 (a) Hamilton’s principle |

Variational formulation of linear dynamics in terms of Lagrangian:

The evolution of the system from time ¢; to time ¢, through the perturbation &(r, %) is
such that the variation of the integral of the Lagrangian vanishes,

lo
5/ Ldt—=0, L=K-W, (45)

31
with

K=K =} [ p&-€av,
W= Wig)= -4 [ € Fgav.

Minimization (see Goldstein on classical fields) gives Euler—Lagrange equation

d oL d 0L oL A
a@+;mm%@m7%4)éﬁw_%@ e

which is the equation of motion, QED.
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[(b) Rayleigh—Ritz spectral principle]

e Consider quadratic forms W and K (here [) for normal modes ée_i‘”t ;

This gives ¢
w® = Wi for normal modes . (47)

True, but useless: just conclusion a posteriori on € and w?, no recipe to find them.

e ODbtainrecipe by turning this into Rayleigh—Ritz variational expression for eigenvalues:
Eigenfunctions £ of the operator p~'F make the Rayleigh quotient

Al = -5 (48)

stationary; eigenvalues w? are the stationary values of A .

= Practical use: approximate eigenvalues/eigenfunctions by minimizing A over
linear combination of pre-chosen set of trial functions (1,7, .. . Ny )-
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[(c) Energy principle for stability]

e Since I = ||€]|* > 0, Rayleigh—Ritz variational principle offers possibility of testing
for stability by inserting trial functions in 1V/:

— IfW[€] < 0 forsingle £, at least one eigenvalue w* < 0 and system is unstable;

— IfW[€] > 0 for all &s, eigenvalues w? < 0 do not exist and system is stable.

e = Energy principle: An equilibrium is stable if (sufficient) and only if (necessary)
W&l >0 (49)
for all displacements &(r) that are bound in norm and satisfy the BCs.

e Summarizing, the variational approach offers three methods to determine stability:

(1) Guess a trial function &(r) such that W |[&] < O for a certain system
= necessary stability ( = sufficient instability) criterium;

(2) Investigate sign of IV with complete set of arbitrarily normalized trial functions
=> necessary + sufficient stability criterium;

(3) Minimize W with complete set of properly normalized functions (i.e. with I |£]
related to kinetic energy) = complete spectrum of (discrete) eigenvalues.
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[ Returning to the two viewpoints |

e Spectral theory elucidates analogies between different parts of physics:

MHD Linear analysis QM
Force operator <> Differential equations <= Schrodinger picture
Energy principle <= Quadratic forms <= Heisenberg picture

The analogy is through mathematics l , hot through physics!

e Linear operators in Hilbert space as such have nothing to do with quantum mechanics.
Mathematical formulation by Hilbert (1912) preceded it by more than a decade.
Essentially, the two ‘pictures’ are just translation to physics of generalization of linear
algebra to infinite-dimensional vector spaces (Moser, 1973).

e \Whereas quantum mechanics applies to rich arsenal of spherically symmetric sys-
tems (symmetry with respect to rotation groups), in MHD the constraint V - B = 0
forbids spherical symmetry and implies much less obvious symmetries.
= Application of group theory to MHD is still in its infancy.
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[ Two ‘pictures’ of MHD spectral theory: |

Differential egs. Quadratic forms
(‘Schrodinger’) (‘Heisenberq’)
Equation of motion: Hamilton's principle;
0°¢ N Full dynamics:
F&) =p— 0 K -W dt =0 = '
GEVER (K -wig) g
Eigenvalue problem: Rayleigh’s principle:
43 Spectrum{w?}
F(£) = —pw? 0 ——— =10 = _
(&) pug I[€] & eigenf. {&(r)}
Marginal equation: Energy principle:
Stability (V)
F(¢) =0 Wi(g) 2 0 = n
(&) €l < & trial &(r)
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[ Why does the water fall out of the glass? |

Apply spectral theory and energy principle to simple fluid (no magnetic field) with
varying density in external gravitational field. Equilibrium: Vp = —pV® = pg .

W =3 [ 0]V 67 + (6 VPIV-& ~ (€ VO) V- (5§)] dV

=%/[w!v°€|2+pg°(SV-£*+£*V-§)+g~€*(VP)'é} dv. (30)

Without gravity, fluid is stable since only positive definite first term remains.

Plane slab, p(z), p(x), g = —ge, = equilibrium: p' = —pg .

Wf:%/ |V €1 = pg(&V - €+ EV €)= plgl&]?] dV. (51)

Energy principle according to method (1) illustrated by exploiting incompressible trial
functions, V - £ = 0:

W/ = —%/p’g!ﬁxIQdV >0 = pg<0 (everywhere) . (52)

= Necessary stability criterion: lighter fluid should be on top of heavier fluid.
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e Much sharper stability condition from energy principle according to method (2), where
all modes (also compressible ones) are considered. Rearrange terms in Eq. (&1)):

wi= [ nlv-e-Zef - o+ LD)er| av. 69
Since §, and &, only appear in V - £, minimization with respect to them is trivial:
voe="e (54)
P

= Necessary and sufficient stability criterion:

plg+ & <0 (everywhere) . (55)

P
e Actually, we have now derived conditions for stability with respect to internal modes.
Original water-air system requires extended energy principle with two-fluid interface
(model 11*), permitting description of external modes: our next subject. Physics will

be the same: density gradient becomes density jump, that should be negative at the
interface (light fluid above) for stability.
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[ Interfaces |

e So far, plasmas bounded by rigid wall (model I). Most applications require interface:

—In tokamaks, very low density close to wall (created by ‘limiter’) is effectively vacuum
= plasma—vacuum system (model II);

— In astrophysics, frequently density jump (e.g. to low-density force-free plasma)
= plasma—plasma system (model I1*).

e Model Il: split vacuum magnetic field in equilibrium part B and perturbation Q
Equilibrium: V x B=0, V-B = 0, with BCs
n-B=n-B=0, [p+1iB% =0 (atinterface S) . (56)

n-B=0 (at outer wall V). (57)

Perturbations: V X Q =0, V- Q = 0, with two non-trivial BCs connecting Q to
the plasma variable & at the interface, and one BC at the wall:

1st interface cond., 2nd interface cond. (at interface S) , (58)
n-Q=0 (at outer wall 7). (59)
Explicit derivation of interface conditions (&8) below: Egs. (€2) and (&3).
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[Boundary conditions for interface plasmas]

Need expression for perturbation of the normal n
to the interface.

Integrating Lagrangian time derivative of line ele-
ment (see Chap. 4) yields:

D(dl)/Dt = dl - (Vv) = dl ~ dly- (1+ VE).

N perturbed
[N surface

unperturbed
surface

For dl lying in the boundary surface:
O=n-dlxdly- (1+VE) - (ng+mny) =dly-[(VE) -nyg+ny].

= Lagrangian perturbation: n;;, = —(V&) - ny + A, with vector X L dl,.

Since dl has arbitrary direction in unperturbed surface, A mustbe || ng: A = uny.
Since |n| = |ng| =1, we have ny-ny;, =0, sothat u=mny-(VE) - ny.

This provides the Lagrangian perturbation of the normal:

n, = —<V£) Ny + Ng Ny - (V£> Ny =N X {n() X [(V£> . no]} . (60)
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e Original BCs for model Il come from jump conditions of Chap. 4.
@ n-B=n- B =0 (at plasma—vacuum interface) ,
(b) [p+ %B2]] =0 (at plasma—vacuum interface) .

Also need Lagrangian perturbation of magnetic field B and pressure p at perturbed
boundary position r, evaluated to first order:

Bl ~ (Bo+Q+&-VBy)l,,
P = (po+7+& Vpo)ly, = (Po — 120V - €)lx, -
e Insert Eqgs. (60Q) and (&1)) into first part of above BC (a):
0 =n-B=[n;—(VE) ng+ngng-(VE) -ng)- (By+Q+&:VBy)
~ —By- (V€ ng+ny-Q+€&-(VBy) -ng=-—ny-Vx (ExBy) +np-Q.

Automatically satisfied since Q = V x (£ x By). However, same derivation for
second part of BC (a) gives 1st interface condition relating & and Q:

(61)

n-V x(&x B) =n-Q (at plasma—-vacuum interface .S) . (62)

e Inserting Egs. (&1) into BC (b) yields 2nd interface condition relating & and Q
—wV-£E+B-Q+£-VEB)=B-Q+£-V(EBY) @S . (63
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| Extended energy principle |

e Proof self-adjointness continues from integral (39) for &, 1, connected with vacuum
‘extensions’ Q, R through BCs (89), (&2), (&3), giving symmetric quadratic form.

e Puttingm = &7, R = Q* In integrals gives potential energy for interface plasmas:

Wie, Q) = -1 / £ - F(E)dV = W2e] + Wle] + W7[Q],  (64)

nere

wrlg =%/ww-512+|@!2+<5-pr-e*ﬂ'-s*><Q
(& V)V (pE)]dV, (65)

Wil = 4 [ In- &P [Vp+ 1B ds. (66)

WQ = %/!QWV. (67)

Work against force F' now leads to increase of potential energy of the plasma, W7,
of the plasma—vacuum surface, 1V°, and of the vacuum, W7,
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Variables £ and Q have to satisfy essential boundary conditions:

1) & regular on plasma volume V', (68)
2) n-V x (€ x B) —n-Q (1st interface condition on S),  (69)
3) n-Q =0 (on outer wall W) . (70)

Note: Differential equations for Q and 2nd interface condition need not be imposed !
They are absorbed in form of W |£, Q] and automatically satisfied upon minimization.
For that reason 2nd interface condition (63) is called natural boundary condition.

Great simplification by assuming incompressible perturbations, V - € = 0:

W €] = L /[lQPﬂ £ x Q- (6-VO)Vp-£]ldV.  (71)

Note: In equation of motion, one cannot simply put V-£& = 0 and drop —ypV-£ from
pressure perturbation 7, since that leads to overdetermined system of equations for
3 components of £ . Consistent procedure: apply two limits v — cocand V - £ — 0
simultaneously such that Lagrangian perturbation 71, = —ypV - £ remains finite.
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[Application to Rayleigh—Taylor instability]

e Apply extended energy principle to gravitational instability of magnetized plasma
supported from below by vacuum magnetic field: Model problem for plasma con-
finement with clear separation of inner plasma and outer vacuum, and instabilities
localized at interface (free-boundary or surface instabilities). Rayleigh—Taylor insta-
bility of magnetized plasmas involves the basic concepts of interchange instability,
magnetic shear stabilization, and wall stabilization. These instabilities arise in wide
class of astrophysical situations, e.g. Parker instability in galactic plasmas.

e Gravitational equilibrium in magnetized plasma: )
-a -
p=po, B=DBee., p=po—pygzr, (72) .
pressure balance at plasma—vacuum interface: plasma \Q»‘ i z
1p2 _ 1H2 ~ - g
Do + §BO — §BO 9 (73) L T~ o
y :\ ~ - - Il N 8
vacuum magnetic field: | S -

vacuum

AN

B = Eg(singpey +cospe,). (74) 5oe
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ags . . p . . . . . .
e Insertequilibriuminto W, ., W?, W where jump in surface integral (66)) gives driving

term of the gravitational instability:
n-[Vip+ lBQ)]] =p = —pyg. (75)
Potential energy W&, Q | becomes:

Wp=—/!Q|2dv Q=Vx(ExB), V.£=0, (76)
W = —lpyg / n-€[ds, (77)

WU:%/]QFCW, V-Q=0. (78)

Task: Minimize W€, Q] for divergence-free trial functions ¢ and Q that satisfy the
essential boundary conditions (&8)—([ZQ).

e Slab is translation symmetric in ¥y and 2z = Fourier modes do not couple:

= (fx(x),é“y( ), & (w0 )) (kyytk:2) — gimilarly for Q. (79)
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Eliminating &, from W/, and QZ from W' byusingV-&€=0and V - Q = (), yields
1D expressions:

W = 3B / K26 + 16 1) + 1€, + ikyg, "] da, (80)
0
W* = —3p0gl&.(0)]7, (81)
0
. . 1 . .
W = 4 [P+ 1) + 1+ Q] do 82)
To be minimized subject to normalization that may be chosen freely for stability:
£.(0) = const, (83)
or full physical norm if we wish to obtain growth rate of instabilities:
a 1 ‘
T=doo [ L6+l + i+ k&P do (84)
Essential boundary conditions always need to be satisfied:
Ex(a) =0, (85)

Q.(—b) = 0. (87)
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[ Stability analysis |

e Minimization with respect to £, and Qy only involves minimization of W72 and W":

“ k2 k “ 1
Wr =B [ e B [ ik ] do = 2B} [ (€74 €) do,
o kg 0 0 Ko
0 1 - 1 ko~ 4 U .
W = %/ Qa1 QL1 |+ |2Q +ikoQy | | da = %/ (5@ +]Qu|?) dar.
—b kO kz ]{0 —b kO

= Determine &,(z) and Q,(z), joined by 1st interface condition (86) at = = 0.

e Recall variational analysis: Minimization of quadratic form

a

wigl =3 [ (Pe*+ 6o = Y[ Fee ]y - [ [(PEY - Geledr  (89)
0 0
is effected by variation 0¢(x) of the unknown function &(z):
oW = /0 (FE'0¢ + GESE) da = [F&’ég]g—/o [(FE')Y —GE|o&de =0. (89)

Since o0& = 0 at boundaries, solution of Euler—Lagrange equation minimizes W':
(FE) —GE=0 = Wy =3[ FE ] = —3[FEg)(x=0),  (90)

where we imposed upper wall BC £(a) = 0, appropriate for our application.
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Minimization of integrals 1 and WW" yields following Euler—Lagrange equations,
with solutions satisfying BCs on upper and lower walls:

"k, =0 = & = Csinhlky(a— 1),
Q" —kQ,=0 = Q,=iCsinhl[k(z+D).

Modes are wave-like in horizontal, but evanescent in vertical direction.

(91)

C and C determined by normalization (83) and 1st interface condition (86):
C'sinh(kob) = ko - B&,(0) = Cky - Bsinh(koa) . (92)

Inserting solutions of Euler—Lagrange equations back into energy integrals, yields
final expression for 11 in terms of constant boundary contributions at x = 0:

k232
B fg%(()) - tanh(koa)
2k tanh(koa) (ko - B)® — pokog tanh(koa) + (ko - B>2tanh<kob> ©9)

Expression inside square brackets corresponds to growth rate.
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| Growth rate |

e With full norm (84), we obtain dispersion equation of the Rayleigh—Taylor instability:

w1 ., tanh(kga)
2= —=—|(ky-B)?*— h ko - B)? 94
w Ji o [( 0 ) pok()g tan (k?()CL) + ( 0 ) tanh(kob) ( )

e Field line bending energies ~ (ko - B)? for plasma and ~ i (k, - B)? for vacuum,
destabilizing gravitational energy ~ —%pokog tanh(koa) due to motion interface.

e Since B and B not in same direction (magnetic shear at plasma—vacuum interface),
no kg exists for which magnetic energies vanish =- minimum stabilization when k
on average perpendicular to field lines. Rayleigh—Taylor instability may then lead to
iInterchange instability: regions of high plasma pressure and vacuum magnetic field
are interchanged.

e For dependence on magnitude of k), exploit approximations of hyperbolic tangent:
e —e " { 1 (k> 1: short wavelength)

tanh kK = ~
el + ek

(95)
k (kK < 1: long wavelength)

Short wavelengths (kqa , kob > 1): magnetic > gravitational term, system is stable.
Long wavelengths (koa << 1), and b/a ~ 1: competition between three terms (~ k?)
so that effective wall stabilization may be obtained.
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[ Nonlinear evolution from numerical simulation]
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e [Full nonlinear evolution

Snapshot Rayleigh—Taylor instability
for purely 2D hydrodynamic case:
density contrast 10, (compressible)
evolution.

Shortest wavelengths grow fastest,
‘fingers’/'spikes’ develop, shear flow
Instabilities at edges of falling high
density pillars.

Simulation with AMR-VAC:

Versatile Advection Code, maintained
by Gabor Toth and Rony Keppens;
Adaptive Mesh Refinement resolves
the small scales.
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