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Overview

• Introduction: magnetic explosions;

• Stability of force-free magnetic fields: Lundquist field, a trap;

• Resistive instabilities: tearing mode analysis;

• Spectral theory of resistive modes.
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Magnetic explosions

• Recall MHD8-24 (observation):
TRACE movie of erupting filament

(T171-10050616-19-21-filerup.mpeg)

• Recall MHD8-41 (simulation):
CME by flux cancellation

(Mikic-flx2d.anim.qt)
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Force-free field in cylinder

• Stability of Lundquist field

j = αB ⇒ Bz = B0J0(αr) , Bθ = B0J1(αr) .

Energy principle analysis
[Voslamber & Callebaut, Phys. Rev. 128, 2016 (1962)].

Normal mode analysis
[Goedbloed & Hagebeuk, Phys. Fl. 15, 1090 (1972)],

Field pitch µ ≡ Bθ
rBz

, and eigenfunction ⇒
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Force-free field in cylinder (cont’d)

• Stability of Lundquist field
[Goedbloed & Hagebeuk, PF 15, 1090 (1972)]

Growth rates ⇒
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Force-free field in plane geometry

• Plasma confined between two perfectly conducting plates at x = x1 and x = x2 .
No gravity, no pressure, only current and magnetic field.

• Current such that the magnetic field has constant magnitude but its direction varies.

⇒ Force-free magnetic field with constant α (assumption):

j = ∇×B = αB ⇒ jy = −B′z = αBy , jz = B′y = αBz . (1)

• These equations can easily be integrated:

By = B0 sin αx , Bz = cos αx . (2)

The parameter αa measures the total current
through the plasma.

• Is this configuration stable?

(Is there a limit to the value of αa?) z

x

y

k
θ

B
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Stability: first method (exploiting Q)

• Exploit energy principle: [following Schmidt, Physics of High Temperature Plasmas (1979)]

W = 1
2

∫ (
Q2 + αB · ξ∗ ×Q

)
dx . (3)

• Introduce vector potential A ,

Q = ∇×A , A ≡ ξ ×B , (4)

⇒ W = 1
2

∫ [
(∇×A)2 − αA∗ · ∇ ×A

]
dx . (5)

• Minimize W subject to some convenient normalization. Choose the helicity:
[Woltjer, Proc. Nat. Acad. Sci. USA 44, 489 (1958); Taylor, PRL 33, 1139 (1974)]

K ≡ 1
2

∫
A∗ · ∇ ×A dx = const . (6)

• This problem is equivalent to minimization of the quadratic form

W̃ ≡ W + λK = 1
2

∫ [
(∇×A)2 − (α− λ)A∗ · ∇ ×A

]
dx , (7)

where λ is a Lagrange multiplier that is to be determined together with A.
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First method (cont’d)

• Integrate by parts:

W̃ = 1
2

[
A∗ × (∇×A) · n

]x2

x1

+1
2

∫
A∗·[∇×∇×A− (α− λ)∇×A] dx . (8)

Boundary term vanishes because of BCs B · n = 0 and ξ∗ · n = 0 .

• For arbitrary A∗, W̃ is minimized by solutions of the Euler–Lagrange equation

∇×∇×A− (α− λ)∇×A = 0 . (9)

which is a force-free field equation for the perturbations:

∇×Q = α̃Q , α̃ ≡ α− λ . (10)

• Eigenfunctions and eigenvalue α̃ (and hence λ) determined by BCs n ·Q|x1,2
= 0 .

Inserting such an eigenfunction into (8) gives W̃ = 0 , so that

W = W̃ − λK = (α̃− α) 1
2

∫
A∗ · ∇ ×A dx =

α̃− α

α̃
1
2

∫
A∗ · ∇ ×∇×A dx

=
α̃− α

α̃
1
2

∫
(∇×A)2 dx =

α̃− α

α̃
1
2

∫
Q2 dx . (11)
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First method (cont’d)

• Hence, W < 0 (system unstable) if equation (10) has eigenvalue α̃ in the range

0 < α̃ < α . (12)

It remains to determine that eigenvalue.

• We have to study the Euler equation (10) in detail to find out whether this condition
can be satisfied. Reduction yields an ODE for the normal component of Q:

Q′′ + (α̃2 − k2)Q = 0 . (13)

• The solution of Eq. (13) which vanishes for x = x1 and x = x2 reads:

Q = C sin
√

α̃2 − k2x , where
√

α̃2 − k2 = nπ/a , a ≡ x2 − x1 . (14)

Hence, the instability criterion (12) is fulfilled for

α̃2 = k2 +
n2π2

a2
< α2 , or (k/α)2 + (nπ/αa)2 < 1 . (15)

This gives an unstable region in the k/α− αa plane as sketched on following page.
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Q

n = 1 n = 2 n = 3
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b

•

1

-1

n =1 n =1, 2 n = 1, 2, 3 unstable

k/α

π 2π 3π
α a

a

• •

• Moving to the right in shaded area
subsequently n = 1 , n = 2 , . . .
become unstable. The marginal
modes ( α̃ = α ) are labeled by
the number of nodes of Q.

• For long wavelengths (k = 0 ), if
αa increases with πa (magnetic
field changes direction by 180◦),
a new mode with one more node
becomes unstable.

• Appears to be reasonable result:

a long wavelength instability
driven by the current, which
has to surpass critical value
given by αa = π .
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Stability: second method (exploiting ξ)

• Double-check the result obtained by rederiving it from formulation in terms of the
displacement ξ rather than the magnetic field perturbation Q .

• Exploit field line projection ξ = ξex − iηe⊥ − iζe‖ , and express the components of
Q = ∇× (ξ ×B) in terms of ξ, η and ζ (noting that the latter does not appear):

Qx = iFξ ,

Qy = −(Byξ)′ + kzBη = −Byξ
′ − αBzξ + kzBη , (16)

Qz = −(Bzξ)′ − kyBη = −Bzξ
′ + αByξ − kyBη ,

• It is now straightforward to express the potential energy (3) in terms of ξ and η:

W = 1
2

∫ x2

x1

[|Qx|2 + |Qy|2 + |Qz|2 − αξ∗x(ByQz−BzQy)− α(Bzξ
∗
y−Byξ

∗
z)Qx] dx

= 1
2

∫ x2

x1

[F 2ξ2 + (αBξ − Fη)2 + (Bξ′ + Gη)2 − α2B2ξ2 + 2αBFξη] dx

= 1
2

∫ x2

x1

[F 2(ξ2 + η2) + (Bξ′ + Gη)2] dx > 0 . (17)

⇒ The slab is trivially stable! [Goedbloed & Dagazian, Phys. Rev A4, 1554 (1971)]
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Second method (cont’d)

• We may obtain the minimizing perturbations by rearranging terms:

W = 1
2

∫ x2

x1

[F 2(ξ′2/k2 + ξ2) + (kBη + Gξ′/k)2] dx ,

so that W is minimized for perturbations that satisfy

kBη + Gξ′/k = 0 , and (F 2ξ′)′ − k2F 2ξ = 0 . (18)

• One easily checks that the latter equation corresponds to Eq. (13) for α̃ = α when
Q = Fξ is substituted: the minimising equations are equivalent.

⇒ There is no mistake in the algebra!



Resistive plasmas: Stability of force-free magnetic fields (10) R-12
�

�

�



What went wrong?

• To see what went wrong, plot the eigenfunctions ξ corresponding to the eigenfunc-
tions Q shown on R-9. Writing F = kB cos(αx− θ) , we find:

ξ =
Q

F
=

1

kB

sin(nπx/a)

cos(αx− θ)
. (19)

Hence, if a solution Q exists such that W as given in Eq. (11) is negative, αa > π
and ξ develops a singularity (see following page). For every zero that is added in Q,
at least one zero is added to the function F because F oscillates faster than or at
least as fast as Q .

• These singularities are such that the norm

‖ξ‖2 =

∫
(ξ2 + η2 + ζ2) ρ dx =

∫
[ ξ2 + G2ξ′2/(k4B2)] ρ dx→∞ ,

where η from Eq. (18) and ζ = 0 have been substituted.

• Hence, the trial functions Q used in deriving the stability criterion (15) do not
correspond to permissible displacements ξ.
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a

n = 1 n = 2 n = 3

ξ

• • •

k /α

π 2π 3π

1 sing. 2 sing. 3 sing.

α a

b

ξξ • Marginal modes in terms of ξ.

• Singularities of ξ occur for
αa > π in the shaded area:

there is always a singularity in
the ‘unstable’ regions of R-9.

• Is that all: no use for this
nice stability diagram?
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Basic equations
• We now present the resistive normal mode analysis of the plane slab. Starting

point is the nonlinear resistive MHD equations:

∂ρ

∂t
= −∇ · (ρv) , (20)

ρ (
∂v

∂t
+ v · ∇v) = −∇p + ρg + j×B , j = ∇×B , (21)

∂p

∂t
= −v · ∇p− γp∇ · v + (γ − 1) η| j|2 , (22)

∂B

∂t
= −∇×E = ∇× (v ×B)−∇× (η j) . (23)

Resistivity causes Ohmic dissipation term in the pressure equation and resistive
diffusion in the flux equation. The latter completely changes the stability analysis.

• We linearise the equations for perturbations about static equilibrium. Strictly, this
assumption is not justified since resistivity causes magnetic field to decay. However,
the magnetic Reynolds number Rm ≡ µ0l0vA/η is usually very large so that this is
a very slow process: τ ∼ Rm · τA, where τA is the characteristic Alfvén time for
ideal MHD phenomena. The resistive modes grow on the much faster time scale
∼ (Rm)ν, where 0 < ν < 1 , so that the equilibrium may be considered static.
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• Linearize: f(r, t) = f0(x) + f1(x)ei(kyy+kzz−ωt) , (24)

with equilibrium variables ρ0, p0, and B0, where we will suppress the subscript 0, and
perturbations variables δ ≡ ρ1, v ≡ v1, π ≡ p1, and Q ≡ B1.

• Assuming constant resistivity η, the linearised evolution equations read:

∂δ

∂t
= −∇ · (ρv) , (25)

ρ
∂v

∂t
= −∇π + δg−B× (∇×Q) + (∇×B)×Q , (26)

∂π

∂t
= −v · ∇p− γp∇ · v + 2(γ − 1)η∇×B · ∇ ×Q , (27)

∂Q

∂t
= ∇× (v ×B) + η∇2Q . (28)

The resistive terms spoil possibility of integrating the equations for δ, π, and Q to get
expressions in terms of ξ alone (as in ideal MHD). We can still exploit ξ, but it will not
be possible to eliminate Q. Thus, the new feature of resistive MHD is the distinction
between fluid flow, described by ξ, and magnetic field evolution, described by Q:
Magnetic field and fluid do not necessarily move together anym ore .
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• Project onto the direction of inhomogeneity (x) and k0 = (0, ky, kz):

u ≡ vx (normal velocity) ,

v ≡ (∇× v)x = −i(kzvy − kyvz) (normal vorticity) ,

w ≡ ∇ · v − vx
′ = i(kyvy + kzvz) (horizontal compressibility) , (29)

Q ≡ −iQx (normal magnetic field) ,

R ≡ i(∇×Q)x = i j1x = kzQy − kyQz (normal current).

• The eigenvalue problem becomes

− iω δ = −(ρu)′ − ρw ,

−iρω u = −π′ − gδ + k−2
0 (FQ′ + GR)′ − FQ ,

−iρω v = −G′Q + FR ,

−iρω w = k2
0π − F ′Q−GR , (30)

−iω π = − p′u− γp(u′ + w)− 2(γ − 1)η k−2
0 [ F ′(Q′′ − k2

0Q) + G′R′ ] ,

−iω Q = Fu + η(Q′′ − k2Q) ,

−iω R = (Gu)′ − Fv + Gw + η(R′′ − k2R) ,

where F and G are the projections of k0 onto the magnetic field.
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• Assume incompressibility: take limits γ → ∞ and ∇ · v → 0 such that product
γp∇ · v, and hence π , remains finite but undetermined. Consequently, equation
for π should be dropped (Ohmic dissipation term disappears from the problem) and
replaced by the constraint of incompressibility, ∇ · v = 0 . Hence, w = −u′, so that
Eq. (30)(d) for w can then be used to determine π. Variables δ, v, and w may be
expressed in ξ ≡ u/(−iω), Q, and R so that we obtain a 6th order sytem:

η [ (ρω2ξ′)′ − k2(ρω2 + ρ′g) ξ + F ′′Q ] + iωF (Q− Fξ) = 0 ,

η (Q′′ − k2Q) + iω (Q− Fξ) = 0 , (31)

η (R′′ − k2R) + iω (R−G′ξ)− iF

ρω
(FR −G′Q) = 0 .

Last equation does not couple so that we get a 4th order system for ξ and Q alone.

• Ideal MHD limit η → 0 is tricky: Expand Eq. (31)(b) to first order,

Q = Fξ +
iη

ω
(Q′′ − k2Q) ≈ Fξ +

iη

ω
[ (Fξ)′′ − k2Fξ ] , (32)

and then insert result in Eq. (31)(a):

[(ρω2 − F 2) ξ′]′ − k2(ρω2 − F 2 + ρ′g)ξ = 0 , Q = Fξ . (33)

This agrees with ideal MHD, where field and fluid move together again.
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Tearing analysis

• Tearing modes result in breaking and rejoining of the magnetic field lines, and are
exponentially unstable so that a real and positive eigenvalue may be defined:

λ ≡ −iω > 0 ; (34)

We assume ρ = const ⇒ ρ′g = 0 : no ideal MHD gravitational instabilities.

• The modes are then described by the resistive MHD equations in the following form:

η [ λ2(ξ′′ − k2ξ)− (F ′′/ρ) Q ] + λ(F/ρ) (Q− Fξ) = 0 ,
(35)

η (Q′′ − k2Q)− λ (Q− Fξ) = 0 ,

which, in the limit η = 0 , transform into the ideal MHD equations

[ (λ2 + F 2/ρ) ξ′ ]′ − k2(λ2 + F 2/ρ) ξ = 0 , Q = Fξ . (36)

Note that all terms in these equations are real now.

• First, make everything dimensionless by exploiting slab thickness a, density ρ, and
magnitude of magnetic field somewhere: B0 ⇒ vA ≡ B0/

√
ρ , so that τA ≡ a/vA .
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Tearing analysis (cont’d)
• Next, define dimensionless parameters so that one can make various assumptions

on the smallness of those parameters to exploit them in asymptotic expansions.

• Horizontal wavelength comparable to transverse size a of the plasma:

k0a ∼ 1 , (37)

since tearing modes are large-scale macroscopic MHD modes involving small-scale
resistive effect in the normal (x), but not in the transverse (y, z) directions.

• Next, exploit magnetic Reynolds number as an ordering parameter :

(Rm)−1 ≡ η/(µ0avA)≪ 1 . (38)

Equilibrium decays on diffusion time scale τD ≫ τA. Resistive modes grow much
faster than the resistive diffusion time, but much slower than the ideal MHD time τA:

(τD)−1 ≡ (Rm)−1vA/a ≪ λ ≪ vA/a ≡ (τA)−1 . (39)

This is possible if we can find modes with a growth rate λ that scales as a broken
power of the magnetic Reynolds number: λ ∼ (Rm)−ν vA/a , where 0 < ν < 1.
This will turn out to be the case. Since Rm is huge, this provides enough parameter
space for the asymptotic analysis.
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Boundary layer analysis

• For small η, resistive equations (35) automatically lead to ideal MHD equations (36):

Q ≈ Fξ + (η/λ) [ (Fξ)′′ − k2Fξ ] ≈ [ 1 +O(η/(λa2)) ] Fξ ≈ Fξ , (40)

where resistive correction is negligible if ξ is assumed to have O(1) variations only .

• From our FFF example, we know that this assumption is not justified if ideal MHD
singularities F = 0 occur. Then, ξ ideal ∼ 1/x → ∞ while the magnetic field
variable Q remains finite. Hence, the resistive terms in Eq. (40) become operative in
a small layer surrounding the ideal MHD singularity limiting the amplitude of ξ and
the related current density. Outside this layer, ideal MHD is appropriate.

• Consequently, three regions occur: two outer ideal MHD regions where F is not
small, and an inner resistive layer surrounding the point F = 0 . The solutions of the
three regions have to be matched so that there should be overlap regions where the
resistive as well as the ideal solutions are valid.

• Of course, the singularity F = 0 can occur anywhere on the plasma interval, but we
will position it at x = x0 = 0 for simplicity.
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• Resistive (drawn) and ideal (dashed)
MHD solutions at the ideal MHD singu-
larity F = 0 ⇒

• Solutions can be obtained by either
numerical integration of the resistive
equations over the entire region or by
doing an asymptotic analysis separat-
ing the three regions and matching the
solutions at x = ±ǫ.

• The asymptotic analysis gives explicit
expressions for growth rate with broken
powers of magnetic Reynolds number,
justifying the ordering (39).

[Furth, Killeen & Rosenbluth,

Physics of Fluids 6, 459 (1963)]

Generalized to resistive internal kinks.

[Coppi, Galvão, Pellat, Rosenbluth & Rutherford,

Sov. J. Plasma Phys. 2, 533 (1976)]
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• Matching involves jump ∆′ of logarithmic derivative of magnetic field perturbation of
outer ideal MHD solution,

∆′ ≡ a

Q

(
dQ

dx

∣∣∣∣outer
x↓0
− dQ

dx

∣∣∣∣outer
x↑0

)
, (41)

which appears in the explicit expression for growth rate of the tearing mode:

λ = R−3/5
m (KH)2/5(∆′/C)4/5 vA/a , K ≡ ka , H ≡ F ′(0)a/(kB0) . (42)

• This justifies our assumption of broken powers of the magnetic Reynolds number.
Estimate of resistive layer width:

δ ∼ R−2/5
m (KH)−2/5(∆′/C)1/5 a , (43)

which also conforms to our assumptions.

• Tearing mode analyisis requires ∆′ > 0 . Example of force free magnetic field gives

∆′ = −2a
√

α2 − k2 cot (1
2
a
√

α2 − k2) , (44)

which is positive, when (αa)2 − (ka)2 ≡ H2 −K2 > (nπ)2. This agrees with our
‘wrong’ stability diagram: The plane force-free field is unstable with respect to
long wavelength tearing instabilities, driven by the curre nt!
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Computational methods and extensions

• Computational methods: Discretization of the resistive spectral problem (25)–(28)
with Finite Element Method in direction of inhomogeneity and Fast Fourier Transforms
in periodic directions, and modern eigenvalue solvers like Jacobi–Davidson method,

[Sleijpen & van der Vorst, SIAM J. Matrix Anal. Appl. 17, 401 (1996)]

yield extremely accurate computer codes computing the complete resistive spectrum
for a given one- or two-dimensional equilibrium, including tokamak or a coronal loop.

[Kerner, Goedbloed, Huysmans, Poedts & Schwarz, J. Comp. Phys. 142, 271 (1998)]

• Extended MHD: The singular current layers are resolved by replacing (or extending)
the Ohmic resistivity term ηj with effects of finite electron inertia and the Hall term of
the generalized Ohm’s law [see Vol. I, Eq. (3.149)]:

− me

e2ne

[ ∂j

∂t
+∇ · (jv + vj)

]
− 1

ene
[ j×B−∇pe] + E + v ×B = ηj . (45)

• Presently, intensive research on magnetic reconnection starting from extended
MHD models, with a wide variety of applications in fusion research (sawtooth crash
in tokamaks), space physics (magnetosphere), and astrophysics (stellar flares).
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Resistive spectrum: surprise

• Resistivity changes order of system so
that the singularities due to vanishing
coefficient in front of highest derivative
disappear. Hence, one should expect
that the ideal MHD continua split up in
discrete modes.

• This is what happens, but in a totally
unexpected way: multitude of discrete
modes on triangular paths appear in
the complex λ ≡ −iω plane.

• Collective effect of ideal MHD continua
appears as the damped quasi-mode
inside triangle. This mode is robust:
damping remains in the limit η → 0!

[Poedts & Kerner, PRL 66, 2871 (1991)]

←


