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Overview

• Introduction: stellar outflows, MHD group diagram and characteristics, connection
with the spectral point of view;

• Discontinuities: derivation of the MHD jump conditions, application to gas dynamics,
four different kinds of discontinuities and shocks in MHD;

• Transonic equilibria: symmetric stationary equilibria, self-similar solutions, elliptic
and hyperbolic flow regimes, shock conditons;

• Transonic instabilities: transonic enigma, Trans-Slow Alfvén Continuum instability,
implications for accretion flows;

• Perspective: laboratory and astrophysical plasmas from one point of view.



Transonic MHD Flows and Shocks: Introduction (1) S-2

Recall MHD8-37/38:
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Solar wind, Parker model

• Coronal plasma at 106 K, density drops for increasing r.

– Pressure gradient drives continuous outflow.

– Predicted by Parker in 1958, later observed by satellites.

• Model with hydrodynamic equations, spherical symmetry:

– Look for stationary solutions, ∂/∂t = 0 ;

– Assume isothermal corona (fixed temperature T ), include gravity:

d

dr
(r2ρv) = 0 ⇒ r2ρv = const ,

ρv
dv

dr
+ v2

th

dρ

dr
+GM⊙

ρ

r2
= 0 ;

– Use constant isothermal sound speed p/ρ ≡ v2
th

.
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• Scale v̄ ≡ v/vth (Mach number) and r̄ ≡ r/R⊙ to get implicit relation for v̄(r̄) :

F (v̄, r̄) ≡ 1

2
v̄2 − ln v̄ − 2 ln

(
r̄

r̄c

)
− 2

r̄c
r̄

+ 3

2
= C , r̄c ≡ 1

2

GM⊙
R⊙v2

th

.

• Two solutions through critical sonic point: solar wind outflow terminating at ISM
shock, and (for purpose of illustration) inward accretion also stopped by a shock:

⇒ Need to investigate MHD counterpart of HD shocks.
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Recall MHD5-29:
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MHD group diagram and characteristics

B

bc
2 2  b  +c

Alfvén

b c

slow

fast

•• •

•
2 2  b  +c

f -

x

t

A - s - E s + A + f +

Group diagram is the ray surface,
i.e. the spatial part of characteristic
manifold at certain time t0.

x-t cross-sections of 7 characteristics
(x-axis oblique with respect to B;
inclination of entropy mode E indicates
plasma background flow).
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Connection with spectral point of view

• Short-wavelength limit of spectral structure with three singular continuous spectra:

slow : {ω2
S(x)} , Alfvén : {ω2

A(x)} , fast : ω2
F (= ∞) . (1)

For equilibria with flow these continua are Doppler shifted:

Ω±
S = ±ωS + k · v , Ω±

A = ±ωA + k · v , Ω±
F = ±∞ . (2)

• This yields the following spectral structure:

  fast   slow  Alfvén   fast  slow   Alfvén

backward forward

ω    x x
S Ω   - S Ω   +A Ω   - A Ω   +

f0 Ω   - s0 Ω   - 0 Ω   f0 Ω   +

F Ω   - = − ∞ F Ω   += ∞

s0 Ω   +

E Ω   (        )

non-monotonic
Sturmian
anti-Sturmian

continuum
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Connection with spectral point of view (cont’d)

• Perturbations of flow propagate along space-time manifolds called characteristics.
MHD group diagram on S-4 represents snapshot of spatial part of the characteristic.
The Lagrangian time derivative

D

Dt
≡ ∂

∂t
+ v · ∇ (3)

yields temporal phenomena (waves & instabilities) through ∂/∂t, whereas spatial
derivative ∇ dominates the description of the stationary equilibrium states. Hence,
linear waves and non-linear stationary equilibria are not s eparate issues .

Mach angle

• To get spatial characteristics (or caustics) in MHD, one should construct tangents to
Friedrichs’ group diagram of S-4: much more intricate patterns than in gasdynamics.
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Deriving jump conditions

• Recall MHD4-25/26 with the general procedure to derive the jump conditions:

Integrate conservation equations across shock from ©1 (undisturbed) to ©2 (shocked).

• Only contribution from gradient normal to the front:

lim
δ→0

∫ 2

1

∇f dl = − lim
δ→0

n

∫ 2

1

∂f

∂l
dl = n(f1−f2) ≡ n [[f ]] .

(4)

• In frame moving with the shock at normal speed u :
(

Df

Dt

)

shock

=
∂f

∂t
− u

∂f

∂l
finite , ≪ ∂f

∂t
≈ u

∂f

∂l
∼ ∞

⇒ lim
δ→0

∫ 2

1

∂f

∂t
dl = u lim

δ→0

∫ 2

1

∂f

∂l
dl = −u [[f ]] . (5)

n

u
1

2

v1
v2

 

• Hence, jump conditions follow from conservation laws by simply sub stituting

∇f → n [[f ]] , ∂f/∂t→ −u [[f ]] . (6)
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Deriving jump conditions (cont’d)

• Conservation of mass,
∂ρ

∂t
+ ∇ · (ρv) = 0 ⇒ −u [[ρ]] + n · [[ρv]] = 0 . (7)

• Conservation of momentum,
∂

∂t
(ρv) + ∇ · [ ρvv + (p + 1

2
B2) I − BB ] = 0

⇒ −u [[ρv]] + n · [[ρvv + (p + 1

2
B2) I − BB]] = 0 . (8)

• Conservation of total energy,
∂

∂t
(1

2
ρv2 + ρe + 1

2
B2) + ∇ · [(1

2
ρv2 + ρe + p + B2)v − v · BB] = 0

⇒ −u [[1
2
ρv2 + 1

γ−1
p + 1

2
B2]] + n · [[(1

2
ρv2 + γ

γ−1
p +B2)v − v · BB]] = 0 . (9)

• Conservation of magnetic flux,

∂B

∂t
+ ∇ · (vB − Bv) = 0 , ∇ · B = 0

⇒ −u [[B]] + n · [[vB − Bv]] = 0 , n · [[B]] = 0 . (10)
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MHD jump conditions

• Recall MHD4-27 with the resulting MHD jump conditions in the shock frame,
obtained from conservation equations (dropping primes & changing the order!):

[[ρvn]] = 0 , (mass) (11)

[[Bn]] = 0 , (normal flux) (12)

ρvn [[vt]] = Bn [[Bt]] , (tangential momentum) (13)

ρvn [[Bt/ρ ]] = Bn[[vt]] , (tangential flux) (14)

[[ρv2
n + p + 1

2
B2
t ]] = 0 , (normal momentum) (15)

ρvn [[ 1

2
(v2
n + v2

t ) + ( γ
γ−1

p +B2
t )/ρ ]] = Bn [[vt · Bt]] . (energy) (16)

⇒ 6 relations for the jumps [[vn]], [[Bn]], [[vt]], [[Bt]], [[p]], [[ρ]].

• However, drop ρvn [[S]] = 0 , replace by [[S]] ≡ [[ρ−γp]] ≤ 0 . (entropy) (17)

⇒ 1 constraint on the signs of [[ρ]] and [[p]], such that S2 > S1:

entropy increases accross shock due to dissipation in thin transition layer.



Transonic MHD Flows and Shocks: Discontinuities (4) S-10
�

�

�



Special case: gas dynamic shocks

• For ordinary gas dynamic shocks (B = 0), the jump conditions reduce to:

[[ρvn]] = 0 , (18)

[[ρvn
2 + p]] = 0 , [[vt]] = 0 , (19)

[[1
2
vn

2 + e + p/ρ]] = 0 , e =
p

(γ − 1)ρ
. (20)

Since [[vt]] = 0, transform to coordinate system moving with tangential flow: vt = 0 .
(This becomes much more intricate in MHD!) The shock conditions then become:

ρ1v1 = ρ2v2 , (21)

ρ1v
2
1 + p1 = ρ2v

2
2 + p2 , (22)

1

2
v2

1 + e1 + p1/ρ1 = 1

2
v2

2 + e2 + p2/ρ1 , e1,2 =
p1,2

(γ − 1)ρ1,2
. (23)

• Solutions for the ratios of quantities on two sides of the shock:

v2

v1

=
ρ1

ρ2

= 1 − 2(M 2
1 − 1)

(γ + 1)M 2
1

,
p2

p1

= 1 +
2γ(M 2

1 − 1)

γ + 1
, M 2

1 ≡ ρ1v
2
1

γp1

, (24)

where upstream Mach number M 2
1 is the controlling parameter.
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Gas dynamic shocks (cont’d)

• It appears that solutions are found for every value of M 2
1 . However, we still have to

implement condition (17) to ensure that the entropy increases across the shock:

S2

S1

≡ p2

p1

(
ρ2

ρ1

)−γ
=

[
1 +

2γ(M 2
1 − 1)

γ + 1

] [
1 − 2(M 2

1 − 1)

(γ + 1)M 2
1

]γ
≥ 1 , (25)

This condition can only be satisfied if M 2
1 ≥ 1, i.e. if upstream flow is supersonic.

Then, the velocity decreases, whereas the density and the pressure increase across
the shock:

v2/v1 = ρ1/ρ2 ≤ 1, p2/p1 ≥ 1 , for M 2
1 ≥ 1 , (26)

whereas

M 2
2 ≡ v2

2

v2
s,2

=
ρ2v

2
2

γp2

= 1 − (γ + 1)(M 2
1 − 1)

1 + γ(2M 2
1 − 1)

≤ 1 , (27)

so that downstream flow is subsonic.
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MHD discontinuities

• Central to MHD, compared to HD, are the tangential jump conditions (13) and (14):

(ρvn)
2 [[Bt/ρ ]] = ρvnBn[[vt]] = B2

n [[Bt]] , (28)

• They permit to distinguish four essentially different discontinuities:

(1) ρvn = 0 , Bn 6= 0 ⇒ [[Bt]] = 0 ⇒ contact discontinuity;

(2 ) ρvn = 0 , Bn = 0 ⇒ (28) identity ⇒ tangential discontinuity;

(3) ρv2
n = B2

n ⇒ [[ρ]] = 0 , [[Bt]] =
√
ρ [[vt]] ⇒ Alfv én discontinuity;

(4) ρv2
n 6= B2

n ⇒ [[ρ]] 6= 0 , all relations needed ⇒ magneto-acoustic shock.

• The first two kinds of discontinuities have been discussed in MHD4-28/30 in relation
to the different laboratory and astrophysical interface models.

• The latter kinds of discontinuities are genuine generalizations of the HD shocks.
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Rotational (or Alfvén) discontinuities

• If ρvn 6= 0 and [[ρ]] = 0 , the MHD jump conditions give:

[[vn]] = 0 , [[p]] = 0 , [[B2
t ]] = 0 , [[Bn]] = 0 , (29)

vn = Bn/
√
ρ , [[vt]] = [[Bt]]/

√
ρ 6= 0 , (30)

i.e. all thermodynamic variables (p, ρ, e) are continuous, including the entropy (for
that reason these discontinuities are not called shocks), and also the magnitude of
B, but direction of B turns through angle about normal. Also, normal velocity
and jump of tangential velocity are equal to their respectiv e Alfv én velocities.
These are called rotational, or Alfv én, discontinuities.

• As always, these dynamical phenomena are central to the MHD picture: The Alfvén
discontinuities are precisely intermediate between the slow and the fast magne-
tosonic shocks, discussed below.
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Magneto-acoustic shocks

• If ρvn 6= 0 and [[ρ]] 6= 0 , the MHD jump conditions give:

ρvn[[vt]] = Bn[[Bt]] , (31)

B2
n [[Bt]] = ρ2v2

n [[Bt/ρ ]] , (32)

[[ρv2
n + p + 1

2
B2
t ]] = 0 , (33)

[[e]] +
{

1

2
(p1 + p2) + 1

4
(Bt1 −Bt2)

2
}

[[ 1/ρ ]] = 0 , (34)

i.e. four shock conditions which provide a complete system to determine the jumps
across the discontinuity. Vectors Bt1, Bt2, n and [[vt]] all lie in the same plane.
These are called fast, intermediate, and slow magneto-acoustic shocks . They
are genuine generalisations of the gas dynamic shocks for magnetised plasmas.

• Note that, because jumps of magnetic field and velocity vectors lie in the same plane,
the second relation is not vectorial but just refers to the amplitudes.

• The last condition is obtained from the original energy relation by eliminating the
velocity by means of the other jump conditions (quite an exercise!).
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Transformation

• The geometric meaning of the jump conditions becomes much clearer when the
tangential velocities vt1 and magnetic fields Bt1 are aligned by means of a transfor-
mation to the de Hoffman–Teller frame.

• For rotational discontinuities vt and Bt then just rotate over the same angle, for
magneto-acoustic shocks only the amplitudes of vt and Bt change:

a




B

t1

v

t1

n

b



n

B

t2

v
t2

• For the latter, switch-on and switch-off shocks may occur (e.g. Bt1 = 0 but Bt2 6= 0).
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Magneto-acoustic shock conditions

• As in gas dynamics, relations between upstream and downstream variables are
obtained by systematic reduction of jump conditions (31)–(34). First, define Alfv én
Mach numbers (without subscript A since that is needed for a different purpose):

M1 ≡
1√
ρ1

ρvn
Bn

, M2 ≡
1√
ρ2

ρvn
Bn

⇒ M 2
1

M 2
2

=
ρ2

ρ1

, (35)

and its three threshold values, determined by p1 and B2
1 ≡ B2

t1 +B2
n:

M 2
A ≡ 1 , M 2

s,f ≡
γp1 +B2

1

2B2
n

[
1 ±

√
1 − 4γp1B2

n

(γp1 +B2
1)

2

]
. (36)

• By considerable algebra, the shock conditions can then be reduced to:
[
(γ + 1)M 2

2 − (γ − 1)M 2
1 − 2M 2

sM
2
f

]
(M 2

2 − 1)2

= (M 2
s +M 2

f −M 2
sM

2
f − 1)

[
γM 4

2 − (γ − 2)M 2
1M

2
2 − (γ + 1)M 2

2 + (γ − 1)M 2
1

]
.

(37)
• This condition can be denoted as f(M 2

1 ,M
2
2 ,M

2
s ,M

2
f ) ≥ 0 .

Similarly, the entropy inequality (17) gives a relation g(M 2
1 ,M

2
2 ,M

2
s ,M

2
f ) ≥ 0 .

An example of how to apply such conditions is illustrated on the following pages.
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Why interest in MHD shocks?

• For its own sake.

• Because it has important applications in astrophysics.

• Because it is a subject that appears to require a complete reformulation of MHD
spectral theory presented thus far:

⇒ Up till now split of dynamics in time-independent background equilibr ium
(static or stationary) described by elliptic PDEs in the spatial domain and time-
dependent perturbations described by hyperbolic PDEs in the space-time domain.

⇒ With presence of shocks, that split becomes questionable because it may imply
that the equilibrium itself becomes hyperbolic in the spatial domain.

(See examples of gas dynamics on page S-6, and 2D transonic MHD flow below.)

⇒ If we wish to develop MHD spectroscopy for laboratory and astrophysical
plasmas on an equal footing, the study of transonic flow and its implication for
the MHD waves and instabilities is inescapable.
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Example: Stationary symmetric equilibrium

[Goedbloed & Lifschitz, Phys. Plasmas 4, 3544 (1997)]

x

y

z

• Stationary equilibrium (∂/∂t = 0) with

translation symmetry (∂/∂z = 0).

• Poloidal magnetic field and flow in x–y plane:

Bp = ez ×∇ψ , poloidal flux ψ(x, y)

ρvp = ez ×∇χ , stream function χ(ψ)

⇒ poloidal Alfv én Mach number M 2(x, y) ≡
ρv2

p

B2
p

≡ (χ′)2

ρ
.

• Five arbitrary equilibrium flux functions, χ , H (Bernoulli), S (entropy), K (poloidal
vorticity/current density), Ω (electric field), collapse onto three: Π1,2,3(ψ) .

Core problem: For arbitrary choice of Π1,2,3(ψ), determine ψ(x, y) & M 2(x, y) .
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Variational principle

• Stationary states obtained by minimizing a Lagrangian,

δ

∫
L dV = 0 , L ≡ 1

2
(1 −M 2)|∇ψ|2 −W (ψ,M 2) ,

where

W ≡ Π1(ψ)

M 2
− Π2(ψ)

γM 2γ
+

Π3(ψ)

1 −M 2
.

⇒ Nonlinear PDE for magnetic flux ψ(x, y):

∇ · [ (1 −M 2)∇ψ ] +
∂W

∂ψ
= 0 ,

⇒ Bernoulli equation for Mach number M 2(x, y):

1

2
|∇ψ|2 +

∂W

∂M 2
= 0 .
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Self-similar solutions

• Assume master profile π ≡ ψ2−2/λ,

Π1 = π(ψ) , Π2 = Aπ(ψ) , Π3 = B π(ψ) ,

and self-similarity in polar coordinates r, θ ,

M−2 = X(θ) , ψ = rλ Y (θ) .

⇒ System of 1st order ODEs for X and Y :

dX

dθ
= ±H

J

√
2F

⇒ trajectory
dY

dX
=
J

H
.

dY

dθ
= ±

√
2F

• Special curves in X–Y phase plane:

F = 0 – Bernoulli boundary (fast & slow flow regimes),

J = 0 – Limiting line characteristic.
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7 flow regimes from Bernoulli equation:

Hff (1+) ( Fast LL ) Hf (1−) , Ef (2)

( Alfvén gap)

Es (3) , Hs (4−) ( Slow LL) Hss (4+) , Ess (5)

0

 

0.1

 

0.2

 

0.3

 

Y

X

Fp o

0 X f X1 1 X2 Xs Xc X3

1-

1+

2 3 4-

4+

5

 F = 0
J = 0

G = 0
trans.
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Sub-slow and slow flow trajectories:

(a)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Q

X

trans.

Fps o

Fpsso

F  = 00
J = 0

G = 0
traject.
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Transition from hyperbolic to elliptic

Sub-slow flow: Hss(4
+) → Ess(5):

(c)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

x

ψ         const
M const

charact.

trans.
B.bound.
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Flow with a limiting line characteristic

Slow Es ,Hs → sub-slow Hss , Ess:
(e)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4

y

x

ψ         const

B.bound.
trans./lim.

charact.

M const

Flow pattern ‘reflected’ by the limiting line?
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No: Limiting line cannot be crossed!

Flow pattern close to limiting line shows that
that streamlines & characteristics are blocked:

(b)

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295

y

x

ψ         const

trans./lim.
charact.

M const

⇒ Limiting lines indicate singular discontinuous flow.
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Shock conditions

2

1

• Flux Y and toroidal field B continuous: [[Y ]] = 0 , [[B ]] = 0 .

• Inverse Mach number X and entropy A discontinuous:

[[(1−1/X)Y ′]] = 0 , [[1/X ]]λ2Y 2/λ+[[X2+(1−1/γ−X)AXγ ]] = 0 , [[A]] ≤ 0 .

• At shock position, 5 parameters:

X̂1 6= X̂2 , Ŷ ≡ Ŷ1 = Ŷ2 , Â1 6= Â2 .

Eliminating A2 yields distilled jump & entropy conditions:

f(X̂1, X̂2, Ŷ , A1) = 0 , g(X̂1, X̂2, Ŷ , A1) ≥ 0 ,

with an additional constraint from the Bernoulli boundaries:

F (X̂1, Ŷ , A1, B) ≥ 0 .

• Procedure: for given parameters Ŷ and A1, plot f in X̂1—X̂2 plane, and cut out
forbidden entropy and Bernoulli parts. This yields the physically permitted jumps.
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Distilled jump condition

(a)

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

X^ 1

X^ 2

jump
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Cutting out forbidden entropy parts

(b)

--

+

--

--

+ +

+

--

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

X^ 1

X^ 2

entropy
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Cutting out forbidden Bernoulli parts

(c)

+

+

+

+

+

+

+

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

X^ 1

X^ 2

Bb.1
Bb.2
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Composite picture: fast, Alfvén & slow shocks

(d)

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

X^ 1

X^ 2

jump

Bb.1
Bb.2

entropy

shock
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Jumping across the singularities

2

3

5

4+

1+

4-

1-

ff

f

ss

s

F

S

A

Connecting the flow regimes: fast, Alfv én & slow shocks.
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Summary on transonic equilibria

• There are four flow regimes , separated by the limiting lines and the Alfvén gap, and
not connected by continuous flows.

• The limiting lines guarantee existence of discontinuous solutions: Fast shocks jump
across the fast limit line, intermediate shocks jump across the Alfv én gap, and
slow shocks jump across the slow limit line.

• The three obstacles create the right conditions to produce three kinds of strongly
discontinuous flows which may be considered as the nonlinear counterparts of the
waves of linear MHD.

[Goedbloed & Lifschitz, Phys. Plasmas 4, 3544 (1997)]
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Recall MHDF-20:
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Accretion disk and jets

Young Stellar Object (M∗ ∼ 1M⊙)

disk and jets

Active Galactic Nucleus (∼ 108M⊙)

disk (optical) and jets (radio)
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Aim:

Unify laboratory and astrophysical pictures of MHD waves an d instabilities

(exploiting scale-independence MHD equations) ⇒ MHD Spectroscopy

‘Historical’ development of our own work in this direction:

• MHD spectral theory, with large-scale numerical computations, since 1970s.

• Laboratory plasmas: MHD spectroscopy for tokamaks.
[Goedbloed, Huysmans, Holties, Kerner, Poedts, PPCF 35, B277 (1993)]

• Astrophysical plasmas: Magnetoseismology of accretion disks.
[Keppens, Casse, Goedbloed, ApJ 579, L121 (2002)]

• Accretion-ejection needs anomalous dissipation ⇒ small-scale instabilities.
[Goedbloed, Beliën, van der Holst, Keppens, PoP 11, 28 (2004)]

⇒ MHD spectral theory for Transonic Flows (2D)
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Model: ‘Superposition’ of tokamak and black hole

• Transonically rotating magnetized (thick) disk
about compact object.

• Accretion speed ≪ rotation speeds of the disk

⇒ Flow on magnetic surfaces!

• We investigate:

Stationary 2D equilibrium + Local instabilities.

g

vp, bp

vϕ, bϕ

• Gravitational parameter :

Γ(ψ) ≡ ρGM∗
R0M 2B2

∼ GM∗
Rv2

ϕ

( = 1 for Kepplerian flow).

• Analysis and numerics with two new codes,

FINESSE [Beliën et al. (2002)] & PHOENIX [Blokland, van der Holst et al. (2007)]

⇒ Trans-Slow Alfv én Continuum instabilities ‘living’ on the magnetic surfac es.
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Variational principle for stationary MHD equilibria

• Two unknowns: pol. flux ψ, square pol. Alfv én Mach number M 2 ≡ ρv2
p/B

2
p .

• Equilibrium from minimizing Lagrangian

δ

∫
L dV = 0 , L ≡ 1

2R2(1 −M 2)|∇ψ|2 − Π1

M 2 − Π2

γM 2γ + Π3

1 −M 2 ,

with nonlinear Πj of five arbitrary flux functions:

stream function χ, Bernoulli H , entropy S, electr. pot. Φ, and a function called K.

‘Grad–Shafranov’ equation: R2 ∇ ·
[
R−2(1 −M 2)∇ψ

]
= · · · , (38)

⇒
Bernoulli equation: M 2 = M 2(∇ψ, · · ·) . (39)

• Substituting (13) into (14) gives transitions from elliptic to hyperbolic flow when

∆ ≡ γp +B2

B2
p

M 2 −M 2
c

(M 2 −M 2
s )(M

2 −M 2
f )

≥ 0 .

⇒ Slow, (Alfv én,) and Fast hyperbolic regimes,



Transonic MHD Flows and Shocks: Transonic instabilities (5) S-37
�

�

�



Transonic enigma

• Nonlinear stationary states and linear waves no longer inde pendent!

– Hyperbolic flow regimes delimited by critical poloidal Alfvén Mach numbers:

0

M

∞M fMc Ms 1

Alfvén fastslow

Ess Hs Es \HA" Ef Hf 22 2 2
[Goedbloed & Lifschitz (1997)]

– Waves cluster at continuous spectra {±ωS}, {±ωA}, ±∞(ωF ) :

0

ω2

Alfvén

Aω 2

fast

∞

slow

Sω 2

• In hyperbolic regimes, standard tokamak equilibrium solve rs diverge!

‘Remedy’: calculate in trans-slow elliptic regime, beyond hyperbolic one.



Transonic MHD Flows and Shocks: Transonic instabilities (6) S-38
�

�

�



Trans-slow elliptic equilibria (numerical)

FINESSE code [Beliën et al., JCP 182, 91 (2002)]
‘Tokamak’ (Γ = 0):

(A)

Accretion disk (Γ = 2):

(C)
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Stability

• Full MHD spectrum determined from Frieman-Rotenberg (1960) equation,

Fstatic(ξ) + ∇ · (ξρv · ∇v) + ρ(ω + iv · ∇)2ξ = 0 ,

which has complex eigenvalues ⇒ overstable modes.

• Six Doppler shifted continuous spectra:

Ω±
S = ±ωS + Ω0 , Ω±

A = ±ωA + Ω0 , Ω±
F = ±∞ , where Ω0 ≡ k0 · v .

⇒ Spectral structure for stationary plasmas [Goedbloed et al. PoP 11, 4332 (2004)]:

ω    
F Ω   +F Ω   -

x x
S Ω   - S Ω   +A Ω   - A Ω   +

f0 Ω   - s0 Ω   - 0 Ω   f0 Ω   
+

(− ∞) (∞)s0 Ω   +

  fast   slow   Alfvén   fast  slow    Alfvén

backward forward

E Ω   (        )

• Torus: Instability by coupling harmonics eimϑ of Alfv én and slow continua.
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Transonic continuum modes

• Singular modes localized about single magnetic / flow surface:

ξ⊥ , ‖ ≈ δ(ψ − ψ0) ξ̂⊥ , ‖(ϑ) einϕ ⇒ EVP Â · V̂ = B̂ · V̂ , V̂ ≡ (ξ̂⊥ , ξ̂‖)
T ,

Â≡




F
R2B2

p

B2
F − (M 2 −M 2

c )
B2

ρ2

[
∂(
ρRBϕ

B2
)
]2 − i(M 2 −M 2

c )
B2

ρ2

[
∂(
ρRBϕ

B2
)
]
Fρ

iρF(M 2 −M 2
c )
B2

ρ2

[
∂(
ρRBϕ

B2
)
]

FM 2
cB

2F + ρ
[
∂((M 2 −M 2

c )
B2

ρ2
∂ρ)

]



,

B̂≡



(
√
ρ ω̃ −FM)

R2B2
p

B2
(
√
ρ ω̃ −MF) − iα

√
ρ ω̃

iα
√
ρ ω̃ (

√
ρ ω̃ −FM)B2(

√
ρ ω̃ −MF)


.

Doppler shifted frequency ω̃ ≡ ω − nΩ in frame rotating with Ω (where E = 0 ).

• Always unstable in the trans-slow ( M 2 > M 2
c ) flow regimes!
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Mode labeling A±

1 branches strongly interact with S±
0 and S±

2 :

_

E5 S5

S+
4 E4 S -

4

S+
3 E3 S -

3

S+
2 E2 S -

2

S+
1 E1 S -

1

S+
0 E0 S -

0

S+
-1 E-1 S -

-1

S+
-2 E-2 S -

-2

A -
2

A -
1

A+
1

A+
1

A -
1

A+
2

E1
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‘Tokamak’ (Γ = 0)

Complex eigenvalues (for n = 1), parameterized
with flux label s ≡ ψ1/2: Overstable modes rotating
clockwise (Re ω̄ > 0), or anti-clockwise (Re ω̄ < 0).

(c)

_

_

PHOENIX code [Goedbloed et al., PoP 11, 28 (2004)]
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Accretion disk (Γ = 2)

Complex eigenvalues (n = 1), parameterized
with flux s ≡ ψ1/2: Locked modes (Re ω̄ = 0)
with huge exponential growth rate!

(c)

_

_

PHOENIX code [Goedbloed et al., PoP 11, 28 (2004)]
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Summary on transonic instabilities

• Instabilities of coupled Alfv én-slow continuous spectra of transonic equilibria
become explosive for large central mass.

• They may cause strong turbulence and anomalous dissipation facilitating both
accretion & ejection of jets from accretion disks about compact objects.

• They will operate in any astrophysical system with flow speeds that surpass the
slow critical speed.

• Transonic flow problems demonstrate that the two completely separate activities of
MHD spectroscopy and nonlinear dynamics should be much more integrated.


